Guiding Symbolic Natural Language Grammar Induction via Transformer-Based Sequence Probabilities

26 May 2020Ben GoertzelAndres Suarez MadrigalGino Yu

A novel approach to automated learning of syntactic rules governing natural languages is proposed, based on using probabilities assigned to sentences (and potentially longer word sequences) by transformer neural network language models to guide symbolic learning processes like clustering and rule induction. This method exploits the learned linguistic knowledge in transformers, without any reference to their inner representations; hence, the technique is readily adaptable to the continuous appearance of more powerful language models... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper