Gravitational cell detection and tracking in fluorescence microscopy data

6 Dec 2023  ·  Nikomidisz Eftimiu, Michal Kozubek ·

Automatic detection and tracking of cells in microscopy images are major applications of computer vision technologies in both biomedical research and clinical practice. Though machine learning methods are increasingly common in these fields, classical algorithms still offer significant advantages for both tasks, including better explainability, faster computation, lower hardware requirements and more consistent performance. In this paper, we present a novel approach based on gravitational force fields that can compete with, and potentially outperform modern machine learning models when applied to fluorescence microscopy images. This method includes detection, segmentation, and tracking elements, with the results demonstrated on a Cell Tracking Challenge dataset.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here