GraphRCG: Self-conditioned Graph Generation via Bootstrapped Representations

2 Mar 2024  ·  Song Wang, Zhen Tan, Xinyu Zhao, Tianlong Chen, Huan Liu, Jundong Li ·

Graph generation generally aims to create new graphs that closely align with a specific graph distribution. Existing works often implicitly capture this distribution through the optimization of generators, potentially overlooking the intricacies of the distribution itself. Furthermore, these approaches generally neglect the insights offered by the learned distribution for graph generation. In contrast, in this work, we propose a novel self-conditioned graph generation framework designed to explicitly model graph distributions and employ these distributions to guide the generation process. We first perform self-conditioned modeling to capture the graph distributions by transforming each graph sample into a low-dimensional representation and optimizing a representation generator to create new representations reflective of the learned distribution. Subsequently, we leverage these bootstrapped representations as self-conditioned guidance for the generation process, thereby facilitating the generation of graphs that more accurately reflect the learned distributions. We conduct extensive experiments on generic and molecular graph datasets across various fields. Our framework demonstrates superior performance over existing state-of-the-art graph generation methods in terms of graph quality and fidelity to training data.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods