Graph data augmentation with Gromow-Wasserstein Barycenters

12 Apr 2024  ·  Andrea Ponti ·

Graphs are ubiquitous in various fields, and deep learning methods have been successful applied in graph classification tasks. However, building large and diverse graph datasets for training can be expensive. While augmentation techniques exist for structured data like images or numerical data, the augmentation of graph data remains challenging. This is primarily due to the complex and non-Euclidean nature of graph data. In this paper, it has been proposed a novel augmentation strategy for graphs that operates in a non-Euclidean space. This approach leverages graphon estimation, which models the generative mechanism of networks sequences. Computational results demonstrate the effectiveness of the proposed augmentation framework in improving the performance of graph classification models. Additionally, using a non-Euclidean distance, specifically the Gromow-Wasserstein distance, results in better approximations of the graphon. This framework also provides a means to validate different graphon estimation approaches, particularly in real-world scenarios where the true graphon is unknown.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here