Unsupervised Graph Embedding via Adaptive Graph Learning

10 Mar 2020  ·  Rui Zhang, Yunxing Zhang, Xuelong. Li ·

Graph autoencoders (GAEs) are powerful tools in representation learning for graph embedding. However, the performance of GAEs is very dependent on the quality of the graph structure, i.e., of the adjacency matrix. In other words, GAEs would perform poorly when the adjacency matrix is incomplete or be disturbed. In this paper, two novel unsupervised graph embedding methods, unsupervised graph embedding via adaptive graph learning (BAGE) and unsupervised graph embedding via variational adaptive graph learning (VBAGE) are proposed. The proposed methods expand the application range of GAEs on graph embedding, i.e, on the general datasets without graph structure. Meanwhile, the adaptive learning mechanism can initialize the adjacency matrix without be affected by the parameter. Besides that, the latent representations are embedded in the laplacian graph structure to preserve the topology structure of the graph in the vector space. Moreover, the adjacency matrix can be self-learned for better embedding performance when the original graph structure is incomplete. With adaptive learning, the proposed method is much more robust to the graph structure. Experimental studies on several datasets validate our design and demonstrate that our methods outperform baselines by a wide margin in node clustering, node classification, and graph visualization tasks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods