GRAND++: Graph Neural Diffusion with A Source Term

We propose GRAph Neural Diffusion with a source term (GRAND++) for graph deep learning with a limited number of labeled nodes, i.e., low-labeling rate. GRAND++ is a class of continuous-depth graph deep learning architectures whose theoretical underpinning is the diffusion process on graphs with a source term. The source term guarantees two interesting theoretical properties of GRAND++: (i) the representation of graph nodes, under the dynamics of GRAND++, will not converge to a constant vector over all nodes even as the time goes to infinity, which mitigates the over-smoothing issue of graph neural networks and enables graph learning in very deep architectures. (ii) GRAND++ can provide accurate classification even when the model is trained with a very limited number of labeled training data. We experimentally verify the above two advantages on various graph deep learning benchmark tasks, showing a significant improvement over many existing graph neural networks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods