GPatch: Patching Graph Neural Networks for Cold-Start Recommendations

25 Sep 2022  ·  Hao Chen, Zefan Wang, Yue Xu, Xiao Huang, Feiran Huang ·

Cold start is an essential and persistent problem in recommender systems. State-of-the-art solutions rely on training hybrid models for both cold-start and existing users/items, based on the auxiliary information. Such a hybrid model would compromise the performance of existing users/items, which might make these solutions not applicable in real-worlds recommender systems where the experience of existing users/items must be guaranteed. Meanwhile, graph neural networks (GNNs) have been demonstrated to perform effectively warm (non-cold-start) recommendations. However, they have never been applied to handle the cold-start problem in a user-item bipartite graph. This is a challenging but rewarding task since cold-start users/items do not have links. Besides, it is nontrivial to design an appropriate GNN to conduct cold-start recommendations while maintaining the performance for existing users/items. To bridge the gap, we propose a tailored GNN-based framework (GPatch) that contains two separate but correlated components. First, an efficient GNN architecture -- GWarmer, is designed to model the warm users/items. Second, we construct correlated Patching Networks to simulate and patch GWarmer by conducting cold-start recommendations. Experiments on benchmark and large-scale commercial datasets demonstrate that GPatch is significantly superior in providing recommendations for both existing and cold-start users/items.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here