GLACIAL: Granger and Learning-based Causality Analysis for Longitudinal Studies

13 Oct 2022  ·  Minh Nguyen, Gia H. Ngo, Mert R. Sabuncu ·

The Granger framework is widely used for discovering causal relationships based on time-varying signals. Implementations of Granger causality (GC) are mostly developed for densely sampled timeseries data. A substantially different setting, particularly common in population health applications, is the longitudinal study design, where multiple individuals are followed and sparsely observed for a limited number of times. Longitudinal studies commonly track many variables, which are likely governed by nonlinear dynamics that might have individual-specific idiosyncrasies and exhibit both direct and indirect causes. Furthermore, real-world longitudinal data often suffer from widespread missingness. GC methods are not well-suited to handle these issues. In this paper, we intend to fill this methodological gap. We propose to marry the GC framework with a machine learning based prediction model. We call our approach GLACIAL, which stands for "Granger and LeArning-based CausalIty Analysis for Longitudinal studies." GLACIAL treats individuals as independent samples and uses average prediction accuracy on hold-out individuals to test for effects of causal relationships. GLACIAL employs a multi-task neural network trained with input feature dropout to efficiently learn nonlinear dynamic relationships between a large number of variables, handle missing values, and probe causal links. Extensive experiments on synthetic and real data demonstrate the utility of GLACIAL and how it can outperform competitive baselines.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods