Entropic (Gromov) Wasserstein Flow Matching with GENOT

13 Oct 2023  ·  Dominik Klein, Théo Uscidda, Fabian Theis, Marco Cuturi ·

Optimal transport (OT) theory has reshaped the field of generative modeling: Combined with neural networks, recent \textit{Neural OT} (N-OT) solvers use OT as an inductive bias, to focus on ``thrifty'' mappings that minimize average displacement costs. This core principle has fueled the successful application of N-OT solvers to high-stakes scientific challenges, notably single-cell genomics. N-OT solvers are, however, increasingly confronted with practical challenges: while most N-OT solvers can handle squared-Euclidean costs, they must be repurposed to handle more general costs; their reliance on deterministic Monge maps as well as mass conservation constraints can easily go awry in the presence of outliers; mapping points \textit{across} heterogeneous spaces is out of their reach. While each of these challenges has been explored independently, we propose a new framework that can handle, natively, all of these needs. The \textit{generative entropic neural OT} (GENOT) framework models the conditional distribution $\pi_\varepsilon(\*y|\*x)$ of an optimal \textit{entropic} coupling $\pi_\varepsilon$, using conditional flow matching. GENOT is generative, and can transport points \textit{across} spaces, guided by sample-based, unbalanced solutions to the Gromov-Wasserstein problem, that can use any cost. We showcase our approach on both synthetic and single-cell datasets, using GENOT to model cell development, predict cellular responses, and translate between data modalities.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods