Generative Adversarial Zero-shot Learning via Knowledge Graphs

7 Apr 2020  ·  Yuxia Geng, Jiaoyan Chen, Zhuo Chen, Zhiquan Ye, Zonggang Yuan, Yantao Jia, Huajun Chen ·

Zero-shot learning (ZSL) is to handle the prediction of those unseen classes that have no labeled training data. Recently, generative methods like Generative Adversarial Networks (GANs) are being widely investigated for ZSL due to their high accuracy, generalization capability and so on. However, the side information of classes used now is limited to text descriptions and attribute annotations, which are in short of semantics of the classes. In this paper, we introduce a new generative ZSL method named KG-GAN by incorporating rich semantics in a knowledge graph (KG) into GANs. Specifically, we build upon Graph Neural Networks and encode KG from two views: class view and attribute view considering the different semantics of KG. With well-learned semantic embeddings for each node (representing a visual category), we leverage GANs to synthesize compelling visual features for unseen classes. According to our evaluation with multiple image classification datasets, KG-GAN can achieve better performance than the state-of-the-art baselines.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here