Generalizing Reward Modeling for Out-of-Distribution Preference Learning

22 Feb 2024  ·  Chen Jia ·

Preference learning (PL) with large language models (LLMs) aims to align the LLMs' generations with human preferences. Previous work on reinforcement learning from human feedback (RLHF) has demonstrated promising results in in-distribution PL. However, due to the difficulty of obtaining human feedback, discretely training reward models for every encountered distribution is challenging. Thus, out-of-distribution (OOD) PL is practically useful for enhancing the generalization ability of LLMs with limited preference feedback. This work addresses OOD PL by optimizing a general reward model through a meta-learning approach. During meta-training, a bilevel optimization algorithm is utilized to learn a reward model capable of guiding policy learning to align with human preferences across various distributions. When encountering a test distribution, the meta-test procedure conducts regularized policy optimization using the learned reward model for PL. We theoretically demonstrate the convergence rate of the bilevel optimization algorithm under reasonable assumptions. Additionally, we conduct experiments on two text generation tasks across 20 held-out domains and outperform a variety of strong baselines across various evaluation metrics.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods