Generalization Through the Lens of Learning Dynamics

11 Dec 2022  ·  Clare Lyle ·

A machine learning (ML) system must learn not only to match the output of a target function on a training set, but also to generalize to novel situations in order to yield accurate predictions at deployment. In most practical applications, the user cannot exhaustively enumerate every possible input to the model; strong generalization performance is therefore crucial to the development of ML systems which are performant and reliable enough to be deployed in the real world. While generalization is well-understood theoretically in a number of hypothesis classes, the impressive generalization performance of deep neural networks has stymied theoreticians. In deep reinforcement learning (RL), our understanding of generalization is further complicated by the conflict between generalization and stability in widely-used RL algorithms. This thesis will provide insight into generalization by studying the learning dynamics of deep neural networks in both supervised and reinforcement learning tasks.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here