Generalization Bounds for (Wasserstein) Robust Optimization

NeurIPS 2021  ·  Yang An, Rui Gao ·

(Distributionally) robust optimization has gained momentum in machine learning community recently, due to its promising applications in developing generalizable learning paradigms. In this paper, we derive generalization bounds for robust optimization and Wasserstein robust optimization for Lipschitz and piecewise Hölder smooth loss functions under both stochastic and adversarial setting, assuming that the underlying data distribution satisfies transportation-information inequalities. The proofs are built on new generalization bounds for variation regularization (such as Lipschitz or gradient regularization) and its connection with robustness.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here