GCN-based Multi-task Representation Learning for Anomaly Detection in Attributed Networks

8 Jul 2022  ·  Venus Haghighi, Behnaz Soltani, Adnan Mahmood, Quan Z. Sheng, Jian Yang ·

Anomaly detection in attributed networks has received a considerable attention in recent years due to its applications in a wide range of domains such as finance, network security, and medicine. Traditional approaches cannot be adopted on attributed networks' settings to solve the problem of anomaly detection. The main limitation of such approaches is that they inherently ignore the relational information between data features. With a rapid explosion in deep learning- and graph neural networks-based techniques, spotting rare objects on attributed networks has significantly stepped forward owing to the potentials of deep techniques in extracting complex relationships. In this paper, we propose a new architecture on anomaly detection. The main goal of designing such an architecture is to utilize multi-task learning which would enhance the detection performance. Multi-task learning-based anomaly detection is still in its infancy and only a few studies in the existing literature have catered to the same. We incorporate both community detection and multi-view representation learning techniques for extracting distinct and complementary information from attributed networks and subsequently fuse the captured information for achieving a better detection result. The mutual collaboration between two main components employed in this architecture, i.e., community-specific learning and multi-view representation learning, exhibits a promising solution to reach more effective results.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here