Gaussian Process Latent Variable Model Factorization for Context-aware Recommender Systems

19 Dec 2019  ·  Wei Huang, Richard Yi Da Xu ·

Context-aware recommender systems (CARS) have gained increasing attention due to their ability to utilize contextual information. Compared to traditional recommender systems, CARS are, in general, able to generate more accurate recommendations. Latent factors approach accounts for a large proportion of CARS. Recently, a non-linear Gaussian Process (GP) based factorization method was proven to outperform the state-of-the-art methods in CARS. Despite its effectiveness, GP model-based methods can suffer from over-fitting and may not be able to determine the impact of each context automatically. In order to address such shortcomings, we propose a Gaussian Process Latent Variable Model Factorization (GPLVMF) method, where we apply an appropriate prior to the original GP model. Our work is primarily inspired by the Gaussian Process Latent Variable Model (GPLVM), which was a non-linear dimensionality reduction method. As a result, we improve the performance on the real datasets significantly as well as capturing the importance of each context. In addition to the general advantages, our method provides two main contributions regarding recommender system settings: (1) addressing the influence of bias by setting a non-zero mean function, and (2) utilizing real-valued contexts by fixing the latent space with real values.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods