Gaussian Mean Testing Made Simple

25 Oct 2022  ·  Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia ·

We study the following fundamental hypothesis testing problem, which we term Gaussian mean testing. Given i.i.d. samples from a distribution $p$ on $\mathbb{R}^d$, the task is to distinguish, with high probability, between the following cases: (i) $p$ is the standard Gaussian distribution, $\mathcal{N}(0,I_d)$, and (ii) $p$ is a Gaussian $\mathcal{N}(\mu,\Sigma)$ for some unknown covariance $\Sigma$ and mean $\mu \in \mathbb{R}^d$ satisfying $\|\mu\|_2 \geq \epsilon$. Recent work gave an algorithm for this testing problem with the optimal sample complexity of $\Theta(\sqrt{d}/\epsilon^2)$. Both the previous algorithm and its analysis are quite complicated. Here we give an extremely simple algorithm for Gaussian mean testing with a one-page analysis. Our algorithm is sample optimal and runs in sample linear time.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here