GAN Compression: Efficient Architectures for Interactive Conditional GANs

Conditional Generative Adversarial Networks (cGANs) have enabled controllable image synthesis for many vision and graphics applications. However, recent cGANs are 1-2 orders of magnitude more compute-intensive than modern recognition CNNs. For example, GauGAN consumes 281G MACs per image, compared to 0.44G MACs for MobileNet-v3, making it difficult for interactive deployment. In this work, we propose a general-purpose compression framework for reducing the inference time and model size of the generator in cGANs. Directly applying existing compression methods yields poor performance due to the difficulty of GAN training and the differences in generator architectures. We address these challenges in two ways. First, to stabilize GAN training, we transfer knowledge of multiple intermediate representations of the original model to its compressed model and unify unpaired and paired learning. Second, instead of reusing existing CNN designs, our method finds efficient architectures via neural architecture search. To accelerate the search process, we decouple the model training and search via weight sharing. Experiments demonstrate the effectiveness of our method across different supervision settings, network architectures, and learning methods. Without losing image quality, we reduce the computation of CycleGAN by 21x, Pix2pix by 12x, MUNIT by 29x, and GauGAN by 9x, paving the way for interactive image synthesis.

PDF Abstract CVPR 2020 PDF CVPR 2020 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods