G-STO: Sequential Main Shopping Intention Detection via Graph-Regularized Stochastic Transformer

25 Jun 2023  ·  Yuchen Zhuang, Xin Shen, Yan Zhao, Chaosheng Dong, Ming Wang, Jin Li, Chao Zhang ·

Sequential recommendation requires understanding the dynamic patterns of users' behaviors, contexts, and preferences from their historical interactions. Most existing works focus on modeling user-item interactions only from the item level, ignoring that they are driven by latent shopping intentions (e.g., ballpoint pens, miniatures, etc). The detection of the underlying shopping intentions of users based on their historical interactions is a crucial aspect for e-commerce platforms, such as Amazon, to enhance the convenience and efficiency of their customers' shopping experiences. Despite its significance, the area of main shopping intention detection remains under-investigated in the academic literature. To fill this gap, we propose a graph-regularized stochastic Transformer method, G-STO. By considering intentions as sets of products and user preferences as compositions of intentions, we model both of them as stochastic Gaussian embeddings in the latent representation space. Instead of training the stochastic representations from scratch, we develop a global intention relational graph as prior knowledge for regularization, allowing relevant shopping intentions to be distributionally close. Finally, we feed the newly regularized stochastic embeddings into Transformer-based models to encode sequential information from the intention transitions. We evaluate our main shopping intention identification model on three different real-world datasets, where G-STO achieves significantly superior performances to the baselines by 18.08% in Hit@1, 7.01% in Hit@10, and 6.11% in NDCG@10 on average.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods