Forward and Inverse Approximation Theory for Linear Temporal Convolutional Networks

29 May 2023  ·  Haotian Jiang, Qianxiao Li ·

We present a theoretical analysis of the approximation properties of convolutional architectures when applied to the modeling of temporal sequences. Specifically, we prove an approximation rate estimate (Jackson-type result) and an inverse approximation theorem (Bernstein-type result), which together provide a comprehensive characterization of the types of sequential relationships that can be efficiently captured by a temporal convolutional architecture. The rate estimate improves upon a previous result via the introduction of a refined complexity measure, whereas the inverse approximation theorem is new.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here