Formation of cell assemblies with iterative winners-take-all computation and excitation-inhibition balance

2 Aug 2021  ·  Viacheslav Osaulenko, Danylo Ulianych ·

This paper targets the problem of encoding information into binary cell assemblies. Spiking neural networks and k-winners-take-all models are two common approaches, but the first is hard to use for information processing and the second is too simple and lacks important features of the first. We present an intermediate model that shares the computational ease of kWTA and has more flexible and richer dynamics. It uses explicit inhibitory neurons to balance and shape excitation through an iterative procedure. This leads to a recurrent interaction between inhibitory and excitatory neurons that better adapts to the input distribution and performs such computations as habituation, decorrelation, and clustering. To show these, we investigate Hebbian-like learning rules and propose a new learning rule for binary weights with multiple stabilization mechanisms. Our source code is publicly available.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here