fMRI Neurofeedback Learning Patterns are Predictive of Personal and Clinical Traits

21 Dec 2021  ·  Rotem Leibovitz, Jhonathan Osin, Lior Wolf, Guy Gurevitch, Talma Hendler ·

We obtain a personal signature of a person's learning progress in a self-neuromodulation task, guided by functional MRI (fMRI). The signature is based on predicting the activity of the Amygdala in a second neurofeedback session, given a similar fMRI-derived brain state in the first session. The prediction is made by a deep neural network, which is trained on the entire training cohort of patients. This signal, which is indicative of a person's progress in performing the task of Amygdala modulation, is aggregated across multiple prototypical brain states and then classified by a linear classifier to various personal and clinical indications. The predictive power of the obtained signature is stronger than previous approaches for obtaining a personal signature from fMRI neurofeedback and provides an indication that a person's learning pattern may be used as a diagnostic tool. Our code has been made available, and data would be shared, subject to ethical approvals.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here