Floodgate: inference for model-free variable importance

2 Jul 2020  ·  Lu Zhang, Lucas Janson ·

Many modern applications seek to understand the relationship between an outcome variable $Y$ and a covariate $X$ in the presence of a (possibly high-dimensional) confounding variable $Z$. Although much attention has been paid to testing \emph{whether} $Y$ depends on $X$ given $Z$, in this paper we seek to go beyond testing by inferring the \emph{strength} of that dependence. We first define our estimand, the minimum mean squared error (mMSE) gap, which quantifies the conditional relationship between $Y$ and $X$ in a way that is deterministic, model-free, interpretable, and sensitive to nonlinearities and interactions. We then propose a new inferential approach called \emph{floodgate} that can leverage any working regression function chosen by the user (allowing, e.g., it to be fitted by a state-of-the-art machine learning algorithm or be derived from qualitative domain knowledge) to construct asymptotic confidence bounds, and we apply it to the mMSE gap. \acc{We additionally show that floodgate's accuracy (distance from confidence bound to estimand) is adaptive to the error of the working regression function.} We then show we can apply the same floodgate principle to a different measure of variable importance when $Y$ is binary. Finally, we demonstrate floodgate's performance in a series of simulations and apply it to data from the UK Biobank to infer the strengths of dependence of platelet count on various groups of genetic mutations.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper