flip-hoisting: Exploiting Repeated Parameters in Discrete Probabilistic Programs

19 Oct 2021  ·  Ellie Y. Cheng, Todd Millstein, Guy Van Den Broeck, Steven Holtzen ·

Many of today's probabilistic programming languages (PPLs) have brittle inference performance: the performance of the underlying inference algorithm is very sensitive to the precise way in which the probabilistic program is written. A standard way of addressing this challenge in traditional programming languages is via program optimizations, which seek to unburden the programmer from writing low-level performant code, freeing them to work at a higher-level of abstraction. The arsenal of applicable program optimizations for PPLs to choose from is scarce in comparison to traditional programs; few of today's PPLs offer significant forms of automated program optimization. In this work we develop a new family of program optimizations specific to discrete-valued knowledge compilation based PPLs. We identify a particular form of program structure unique to these PPLs that tangibly affects exact inference performance in these programs: redundant random variables -- variables with repeated parameters and inconsistent path conditions. We develop a new program analysis and associated optimization called flip-hoisting that identifies these redundancies and optimizes them into a single random variable. We show that flip-hoisting yields inference speedups of up to 60% on applications of probabilistic programs such as Bayesian networks and probabilistic verification.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here