FLatS: Principled Out-of-Distribution Detection with Feature-Based Likelihood Ratio Score

8 Oct 2023  ·  Haowei Lin, Yuntian Gu ·

Detecting out-of-distribution (OOD) instances is crucial for NLP models in practical applications. Although numerous OOD detection methods exist, most of them are empirical. Backed by theoretical analysis, this paper advocates for the measurement of the "OOD-ness" of a test case $\boldsymbol{x}$ through the likelihood ratio between out-distribution $\mathcal P_{\textit{out}}$ and in-distribution $\mathcal P_{\textit{in}}$. We argue that the state-of-the-art (SOTA) feature-based OOD detection methods, such as Maha and KNN, are suboptimal since they only estimate in-distribution density $p_{\textit{in}}(\boldsymbol{x})$. To address this issue, we propose FLatS, a principled solution for OOD detection based on likelihood ratio. Moreover, we demonstrate that FLatS can serve as a general framework capable of enhancing other OOD detection methods by incorporating out-distribution density $p_{\textit{out}}(\boldsymbol{x})$ estimation. Experiments show that FLatS establishes a new SOTA on popular benchmarks. Our code is publicly available at https://github.com/linhaowei1/FLatS.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here