Paper

Fitting ReLUs via SGD and Quantized SGD

In this paper we focus on the problem of finding the optimal weights of the shallowest of neural networks consisting of a single Rectified Linear Unit (ReLU). These functions are of the form $\mathbf{x}\rightarrow \max(0,\langle\mathbf{w},\mathbf{x}\rangle)$ with $\mathbf{w}\in\mathbb{R}^d$ denoting the weight vector. We focus on a planted model where the inputs are chosen i.i.d. from a Gaussian distribution and the labels are generated according to a planted weight vector. We first show that mini-batch stochastic gradient descent when suitably initialized, converges at a geometric rate to the planted model with a number of samples that is optimal up to numerical constants. Next we focus on a parallel implementation where in each iteration the mini-batch gradient is calculated in a distributed manner across multiple processors and then broadcast to a master or all other processors. To reduce the communication cost in this setting we utilize a Quanitzed Stochastic Gradient Scheme (QSGD) where the partial gradients are quantized. Perhaps unexpectedly, we show that QSGD maintains the fast convergence of SGD to a globally optimal model while significantly reducing the communication cost. We further corroborate our numerical findings via various experiments including distributed implementations over Amazon EC2.

Results in Papers With Code
(↓ scroll down to see all results)