First-order penalty methods for bilevel optimization

4 Jan 2023  ·  Zhaosong Lu, Sanyou Mei ·

In this paper we study a class of unconstrained and constrained bilevel optimization problems in which the lower level is a possibly nonsmooth convex optimization problem, while the upper level is a possibly nonconvex optimization problem. We introduce a notion of $\varepsilon$-KKT solution for them and show that an $\varepsilon$-KKT solution leads to an $O(\sqrt{\varepsilon})$- or $O(\varepsilon)$-hypergradient based stionary point under suitable assumptions. We also propose first-order penalty methods for finding an $\varepsilon$-KKT solution of them, whose subproblems turn out to be a structured minimax problem and can be suitably solved by a first-order method recently developed by the authors. Under suitable assumptions, an \emph{operation complexity} of $O(\varepsilon^{-4}\log\varepsilon^{-1})$ and $O(\varepsilon^{-7}\log\varepsilon^{-1})$, measured by their fundamental operations, is established for the proposed penalty methods for finding an $\varepsilon$-KKT solution of the unconstrained and constrained bilevel optimization problems, respectively. Preliminary numerical results are presented to illustrate the performance of our proposed methods. To the best of our knowledge, this paper is the first work to demonstrate that bilevel optimization can be approximately solved as minimax optimization, and moreover, it provides the first implementable method with complexity guarantees for such sophisticated bilevel optimization.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here