Finite-Time Analysis of Fully Decentralized Single-Timescale Actor-Critic

12 Jun 2022  ·  Qijun Luo, Xiao Li ·

Decentralized Actor-Critic (AC) algorithms have been widely utilized for multi-agent reinforcement learning (MARL) and have achieved remarkable success. Apart from its empirical success, the theoretical convergence property of decentralized AC algorithms is largely unexplored. Most of the existing finite-time convergence results are derived based on either double-loop update or two-timescale step sizes rule, and this is the case even for centralized AC algorithm under a single-agent setting. In practice, the \emph{single-timescale} update is widely utilized, where actor and critic are updated in an alternating manner with step sizes being of the same order. In this work, we study a decentralized \emph{single-timescale} AC algorithm.Theoretically, using linear approximation for value and reward estimation, we show that the algorithm has sample complexity of $\tilde{\mathcal{O}}(\varepsilon^{-2})$ under Markovian sampling, which matches the optimal complexity with a double-loop implementation (here, $\tilde{\mathcal{O}}$ hides a logarithmic term). When we reduce to the single-agent setting, our result yields new sample complexity for centralized AC using a single-timescale update scheme. The central to establishing our complexity results is \emph{the hidden smoothness of the optimal critic variable} we revealed. We also provide a local action privacy-preserving version of our algorithm and its analysis. Finally, we conduct experiments to show the superiority of our algorithm over the existing decentralized AC algorithms.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here