Finite Sample Analysis of Minimax Offline Reinforcement Learning: Completeness, Fast Rates and First-Order Efficiency

5 Feb 2021  ·  Masatoshi Uehara, Masaaki Imaizumi, Nan Jiang, Nathan Kallus, Wen Sun, Tengyang Xie ·

We offer a theoretical characterization of off-policy evaluation (OPE) in reinforcement learning using function approximation for marginal importance weights and $q$-functions when these are estimated using recent minimax methods. Under various combinations of realizability and completeness assumptions, we show that the minimax approach enables us to achieve a fast rate of convergence for weights and quality functions, characterized by the critical inequality \citep{bartlett2005}. Based on this result, we analyze convergence rates for OPE. In particular, we introduce novel alternative completeness conditions under which OPE is feasible and we present the first finite-sample result with first-order efficiency in non-tabular environments, i.e., having the minimal coefficient in the leading term.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here