PETA: Parameter-Efficient Trojan Attacks

1 Oct 2023  ·  Lauren Hong, Ting Wang ·

Parameter-efficient fine-tuning (PEFT) enables efficient adaptation of pre-trained language models (PLMs) to specific tasks. By tuning only a minimal set of (extra) parameters, PEFT achieves performance that is comparable to standard fine-tuning. However, despite its prevalent use, the security implications of PEFT remain largely unexplored. In this paper, we take the initial steps and present PETA, a novel trojan attack that compromises the weights of PLMs by accounting for downstream adaptation through bilevel optimization: the upper-level objective embeds the backdoor into a model while the lower-level objective simulates PEFT to both retain the PLM's task-specific performance and ensure that the backdoor persists after fine-tuning. With extensive evaluation across a variety of downstream tasks and trigger designs, we demonstrate PETA's effectiveness in terms of both attack success rate and clean accuracy, even when the attacker does not have full knowledge of the victim user's training process.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here