FedGH: Heterogeneous Federated Learning with Generalized Global Header

23 Mar 2023  ·  Liping Yi, Gang Wang, Xiaoguang Liu, Zhuan Shi, Han Yu ·

Federated learning (FL) is an emerging machine learning paradigm that allows multiple parties to train a shared model collaboratively in a privacy-preserving manner. Existing horizontal FL methods generally assume that the FL server and clients hold the same model structure. However, due to system heterogeneity and the need for personalization, enabling clients to hold models with diverse structures has become an important direction. Existing model-heterogeneous FL approaches often require publicly available datasets and incur high communication and/or computational costs, which limit their performances. To address these limitations, we propose a simple but effective Federated Global prediction Header (FedGH) approach. It is a communication and computation-efficient model-heterogeneous FL framework which trains a shared generalized global prediction header with representations extracted by heterogeneous extractors for clients' models at the FL server. The trained generalized global prediction header learns from different clients. The acquired global knowledge is then transferred to clients to substitute each client's local prediction header. We derive the non-convex convergence rate of FedGH. Extensive experiments on two real-world datasets demonstrate that FedGH achieves significantly more advantageous performance in both model-homogeneous and -heterogeneous FL scenarios compared to seven state-of-the-art personalized FL models, beating the best-performing baseline by up to 8.87% (for model-homogeneous FL) and 1.83% (for model-heterogeneous FL) in terms of average test accuracy, while saving up to 85.53% of communication overhead.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods