Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms

31 Oct 2022  ·  Vincent Plassier, Alain Durmus, Eric Moulines ·

This paper focuses on Bayesian inference in a federated learning context (FL). While several distributed MCMC algorithms have been proposed, few consider the specific limitations of FL such as communication bottlenecks and statistical heterogeneity. Recently, Federated Averaging Langevin Dynamics (FALD) was introduced, which extends the Federated Averaging algorithm to Bayesian inference. We obtain a novel tight non-asymptotic upper bound on the Wasserstein distance to the global posterior for FALD. This bound highlights the effects of statistical heterogeneity, which causes a drift in the local updates that negatively impacts convergence. We propose a new algorithm VR-FALD* that uses control variates to correct the client drift. We establish non-asymptotic bounds showing that VR-FALD* is not affected by statistical heterogeneity. Finally, we illustrate our results on several FL benchmarks for Bayesian inference.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here