FedBPT: Efficient Federated Black-box Prompt Tuning for Large Language Models

2 Oct 2023  ·  Jingwei Sun, Ziyue Xu, Hongxu Yin, Dong Yang, Daguang Xu, Yiran Chen, Holger R. Roth ·

Pre-trained language models (PLM) have revolutionized the NLP landscape, achieving stellar performances across diverse tasks. These models, while benefiting from vast training data, often require fine-tuning on specific data to cater to distinct downstream tasks. However, this data adaptation process has inherent security and privacy concerns, primarily when leveraging user-generated, device-residing data. Federated learning (FL) provides a solution, allowing collaborative model fine-tuning without centralized data collection. However, applying FL to finetune PLMs is hampered by challenges, including restricted model parameter access, high computational requirements, and communication overheads. This paper introduces Federated Black-box Prompt Tuning (FedBPT), a framework designed to address these challenges. FedBPT does not require the clients to access the model parameters. By focusing on training optimal prompts and utilizing gradient-free optimization methods, FedBPT reduces the number of exchanged variables, boosts communication efficiency, and minimizes computational and storage costs. Experiments highlight the framework's ability to drastically cut communication and memory costs while maintaining competitive performance. Ultimately, FedBPT presents a promising solution for efficient, privacy-preserving fine-tuning of PLM in the age of large language models.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here