FedAUXfdp: Differentially Private One-Shot Federated Distillation

30 May 2022  ·  Haley Hoech, Roman Rischke, Karsten Müller, Wojciech Samek ·

Federated learning suffers in the case of non-iid local datasets, i.e., when the distributions of the clients' data are heterogeneous. One promising approach to this challenge is the recently proposed method FedAUX, an augmentation of federated distillation with robust results on even highly heterogeneous client data. FedAUX is a partially $(\epsilon, \delta)$-differentially private method, insofar as the clients' private data is protected in only part of the training it takes part in. This work contributes a fully differentially private modification, termed FedAUXfdp. We further contribute an upper bound on the $l_2$-sensitivity of regularized multinomial logistic regression. In experiments with deep networks on large-scale image datasets, FedAUXfdp with strong differential privacy guarantees performs significantly better than other equally privatized SOTA baselines on non-iid client data in just a single communication round. Full privatization of the modified method results in a negligible reduction in accuracy at all levels of data heterogeneity.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here