FastOrient: Lightweight Computer Vision for Wrist Control in Assistive Robotic Grasping

22 Jul 2018  ·  Mireia Ruiz Maymo, Ali Shafti, A. Aldo Faisal ·

Wearable and Assistive robotics for human grasp support are broadly either tele-operated robotic arms or act through orthotic control of a paralyzed user's hand. Such devices require correct orientation for successful and efficient grasping. In many human-robot assistive settings, the end-user is required to explicitly control the many degrees of freedom making effective or efficient control problematic. Here we are demonstrating the off-loading of low-level control of assistive robotics and active orthotics, through automatic end-effector orientation control for grasping. This paper describes a compact algorithm implementing fast computer vision techniques to obtain the orientation of the target object to be grasped, by segmenting the images acquired with a camera positioned on top of the end-effector of the robotic device. The rotation needed that optimises grasping is directly computed from the object's orientation. The algorithm has been evaluated in 6 different scene backgrounds and end-effector approaches to 26 different objects. 94.8% of the objects were detected in all backgrounds. Grasping of the object was achieved in 91.1% of the cases and has been evaluated with a robot simulator confirming the performance of the algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here