FastForest: Increasing Random Forest Processing Speed While Maintaining Accuracy

6 Apr 2020  ·  Darren Yates, Md Zahidul Islam ·

Random Forest remains one of Data Mining's most enduring ensemble algorithms, achieving well-documented levels of accuracy and processing speed, as well as regularly appearing in new research. However, with data mining now reaching the domain of hardware-constrained devices such as smartphones and Internet of Things (IoT) devices, there is continued need for further research into algorithm efficiency to deliver greater processing speed without sacrificing accuracy. Our proposed FastForest algorithm delivers an average 24% increase in processing speed compared with Random Forest whilst maintaining (and frequently exceeding) it on classification accuracy over tests involving 45 datasets. FastForest achieves this result through a combination of three optimising components - Subsample Aggregating ('Subbagging'), Logarithmic Split-Point Sampling and Dynamic Restricted Subspacing. Moreover, detailed testing of Subbagging sizes has found an optimal scalar delivering a positive mix of processing performance and accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods