Faster Convergence with Less Communication: Broadcast-Based Subgraph Sampling for Decentralized Learning over Wireless Networks

24 Jan 2024  ·  Daniel Pérez Herrera, Zheng Chen, Erik G. Larsson ·

Consensus-based decentralized stochastic gradient descent (D-SGD) is a widely adopted algorithm for decentralized training of machine learning models across networked agents. A crucial part of D-SGD is the consensus-based model averaging, which heavily relies on information exchange and fusion among the nodes. Specifically, for consensus averaging over wireless networks, communication coordination is necessary to determine when and how a node can access the channel and transmit (or receive) information to (or from) its neighbors. In this work, we propose $\texttt{BASS}$, a broadcast-based subgraph sampling method designed to accelerate the convergence of D-SGD while considering the actual communication cost per iteration. $\texttt{BASS}$ creates a set of mixing matrix candidates that represent sparser subgraphs of the base topology. In each consensus iteration, one mixing matrix is sampled, leading to a specific scheduling decision that activates multiple collision-free subsets of nodes. The sampling occurs in a probabilistic manner, and the elements of the mixing matrices, along with their sampling probabilities, are jointly optimized. Simulation results demonstrate that $\texttt{BASS}$ enables faster convergence with fewer transmission slots compared to existing link-based scheduling methods. In conclusion, the inherent broadcasting nature of wireless channels offers intrinsic advantages in accelerating the convergence of decentralized optimization and learning.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods