Fast Reinforcement Learning for Anti-jamming Communications

13 Feb 2020  ·  Pei-Gen Ye, Yuan-Gen Wang, Jin Li, Liang Xiao ·

This letter presents a fast reinforcement learning algorithm for anti-jamming communications which chooses previous action with probability $\tau$ and applies $\epsilon$-greedy with probability $(1-\tau)$. A dynamic threshold based on the average value of previous several actions is designed and probability $\tau$ is formulated as a Gaussian-like function to guide the wireless devices. As a concrete example, the proposed algorithm is implemented in a wireless communication system against multiple jammers. Experimental results demonstrate that the proposed algorithm exceeds Q-learing, deep Q-networks (DQN), double DQN (DDQN), and prioritized experience reply based DDQN (PDDQN), in terms of signal-to-interference-plus-noise ratio and convergence rate.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods