Fast K-Means with Accurate Bounds

8 Feb 2016  ·  James Newling, François Fleuret ·

We propose a novel accelerated exact k-means algorithm, which performs better than the current state-of-the-art low-dimensional algorithm in 18 of 22 experiments, running up to 3 times faster. We also propose a general improvement of existing state-of-the-art accelerated exact k-means algorithms through better estimates of the distance bounds used to reduce the number of distance calculations, and get a speedup in 36 of 44 experiments, up to 1.8 times faster. We have conducted experiments with our own implementations of existing methods to ensure homogeneous evaluation of performance, and we show that our implementations perform as well or better than existing available implementations. Finally, we propose simplified variants of standard approaches and show that they are faster than their fully-fledged counterparts in 59 of 62 experiments.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here