Fast and Robust Recursive Algorithms for Separable Nonnegative Matrix Factorization

6 Aug 2012  ·  Nicolas Gillis, Stephen A. Vavasis ·

In this paper, we study the nonnegative matrix factorization problem under the separability assumption (that is, there exists a cone spanned by a small subset of the columns of the input nonnegative data matrix containing all columns), which is equivalent to the hyperspectral unmixing problem under the linear mixing model and the pure-pixel assumption. We present a family of fast recursive algorithms, and prove they are robust under any small perturbations of the input data matrix. This family generalizes several existing hyperspectral unmixing algorithms and hence provides for the first time a theoretical justification of their better practical performance.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here