Fast and Informative Model Selection using Learning Curve Cross-Validation

27 Nov 2021  ·  Felix Mohr, Jan N. van Rijn ·

Common cross-validation (CV) methods like k-fold cross-validation or Monte-Carlo cross-validation estimate the predictive performance of a learner by repeatedly training it on a large portion of the given data and testing on the remaining data. These techniques have two major drawbacks. First, they can be unnecessarily slow on large datasets. Second, beyond an estimation of the final performance, they give almost no insights into the learning process of the validated algorithm. In this paper, we present a new approach for validation based on learning curves (LCCV). Instead of creating train-test splits with a large portion of training data, LCCV iteratively increases the number of instances used for training. In the context of model selection, it discards models that are very unlikely to become competitive. We run a large scale experiment on the 67 datasets from the AutoML benchmark and empirically show that in over 90% of the cases using LCCV leads to similar performance (at most 1.5% difference) as using 5/10-fold CV. However, it yields substantial runtime reductions of over 20% on average. Additionally, it provides important insights, which for example allow assessing the benefits of acquiring more data. These results are orthogonal to other advances in the field of AutoML.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here