Fast and Full-Resolution Light Field Deblurring using a Deep Neural Network

31 Mar 2019  ·  Jonathan Samuel Lumentut, Tae Hyun Kim, Ravi Ramamoorthi, In Kyu Park ·

Restoring a sharp light field image from its blurry input has become essential due to the increasing popularity of parallax-based image processing. State-of-the-art blind light field deblurring methods suffer from several issues such as slow processing, reduced spatial size, and a limited motion blur model. In this work, we address these challenging problems by generating a complex blurry light field dataset and proposing a learning-based deblurring approach. In particular, we model the full 6-degree of freedom (6-DOF) light field camera motion, which is used to create the blurry dataset using a combination of real light fields captured with a Lytro Illum camera, and synthetic light field renderings of 3D scenes. Furthermore, we propose a light field deblurring network that is built with the capability of large receptive fields. We also introduce a simple strategy of angular sampling to train on the large-scale blurry light field effectively. We evaluate our method through both quantitative and qualitative measurements and demonstrate superior performance compared to the state-of-the-art method with a massive speedup in execution time. Our method is about 16K times faster than Srinivasan et. al. [22] and can deblur a full-resolution light field in less than 2 seconds.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here