Fast and Attributed Change Detection on Dynamic Graphs with Density of States

15 May 2023  ·  Shenyang Huang, Jacob Danovitch, Guillaume Rabusseau, Reihaneh Rabbany ·

How can we detect traffic disturbances from international flight transportation logs or changes to collaboration dynamics in academic networks? These problems can be formulated as detecting anomalous change points in a dynamic graph. Current solutions do not scale well to large real-world graphs, lack robustness to large amounts of node additions/deletions, and overlook changes in node attributes. To address these limitations, we propose a novel spectral method: Scalable Change Point Detection (SCPD). SCPD generates an embedding for each graph snapshot by efficiently approximating the distribution of the Laplacian spectrum at each step. SCPD can also capture shifts in node attributes by tracking correlations between attributes and eigenvectors. Through extensive experiments using synthetic and real-world data, we show that SCPD (a) achieves state-of-the art performance, (b) is significantly faster than the state-of-the-art methods and can easily process millions of edges in a few CPU minutes, (c) can effectively tackle a large quantity of node attributes, additions or deletions and (d) discovers interesting events in large real-world graphs. The code is publicly available at https://github.com/shenyangHuang/SCPD.git

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here