Fast acoustic scattering using convolutional neural networks

30 Oct 2019  ·  Ziqi Fan, Vibhav Vineet, Hannes Gamper, Nikunj Raghuvanshi ·

Diffracted scattering and occlusion are important acoustic effects in interactive auralization and noise control applications, typically requiring expensive numerical simulation. We propose training a convolutional neural network to map from a convex scatterer's cross-section to a 2D slice of the resulting spatial loudness distribution. We show that employing a full-resolution residual network for the resulting image-to-image regression problem yields spatially detailed loudness fields with a root-mean-squared error of less than 1 dB, at over 100x speedup compared to full wave simulation.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here