Fairness of Exposure in Stochastic Bandits

3 Mar 2021  ·  Lequn Wang, Yiwei Bai, Wen Sun, Thorsten Joachims ·

Contextual bandit algorithms have become widely used for recommendation in online systems (e.g. marketplaces, music streaming, news), where they now wield substantial influence on which items get exposed to the users. This raises questions of fairness to the items -- and to the sellers, artists, and writers that benefit from this exposure. We argue that the conventional bandit formulation can lead to an undesirable and unfair winner-takes-all allocation of exposure. To remedy this problem, we propose a new bandit objective that guarantees merit-based fairness of exposure to the items while optimizing utility to the users. We formulate fairness regret and reward regret in this setting, and present algorithms for both stochastic multi-armed bandits and stochastic linear bandits. We prove that the algorithms achieve sub-linear fairness regret and reward regret. Beyond the theoretical analysis, we also provide empirical evidence that these algorithms can fairly allocate exposure to different arms effectively.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here