Extremum-Seeking Action Selection for Accelerating Policy Optimization

2 Apr 2024  ·  Ya-Chien Chang, Sicun Gao ·

Reinforcement learning for control over continuous spaces typically uses high-entropy stochastic policies, such as Gaussian distributions, for local exploration and estimating policy gradient to optimize performance. Many robotic control problems deal with complex unstable dynamics, where applying actions that are off the feasible control manifolds can quickly lead to undesirable divergence. In such cases, most samples taken from the ambient action space generate low-value trajectories that hardly contribute to policy improvement, resulting in slow or failed learning. We propose to improve action selection in this model-free RL setting by introducing additional adaptive control steps based on Extremum-Seeking Control (ESC). On each action sampled from stochastic policies, we apply sinusoidal perturbations and query for estimated Q-values as the response signal. Based on ESC, we then dynamically improve the sampled actions to be closer to nearby optima before applying them to the environment. Our methods can be easily added in standard policy optimization to improve learning efficiency, which we demonstrate in various control learning environments.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here