Multi-label classification (MLC) is a challenging task in ma-chine learning consisting in the prediction of multiple labels associated with a single instance. Promising approaches for MLC are those able to capture label dependencies by learning a single probabilistic model—differently from other competitive approaches requiring to learn many models. The model is then exploited to compute the most probable label configuration given the observed attributes. Cutset Networks (CNets) are density estimators leveraging context-specific independencies providing exact inference in polynomial time. The recently introduced Extremely Randomized CNets (XCNets) reduce the structure learning complexity making able to learn ensembles of XCNets outperforming state-of-the-art density estimators. In this paper we employ XCNets for MLC by exploiting efficient Most Probable Explanations (MPE). An experimental evaluation on real-world datasets shows how the proposed approach is competitive w.r.t. other sophisticated methods for MLC

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here