Exponentially fast convergence to (strict) equilibrium via hedging

29 Jul 2016  ·  Johanne Cohen, Amélie Héliou, Panayotis Mertikopoulos ·

Motivated by applications to data networks where fast convergence is essential, we analyze the problem of learning in generic N-person games that admit a Nash equilibrium in pure strategies. Specifically, we consider a scenario where players interact repeatedly and try to learn from past experience by small adjustments based on local - and possibly imperfect - payoff information. For concreteness, we focus on the so-called "hedge" variant of the exponential weights algorithm where players select an action with probability proportional to the exponential of the action's cumulative payoff over time. When players have perfect information on their mixed payoffs, the algorithm converges locally to a strict equilibrium and the rate of convergence is exponentially fast - of the order of $\mathcal{O}(\exp(-a\sum_{j=1}^{t}\gamma_{j}))$ where $a>0$ is a constant and $\gamma_{j}$ is the algorithm's step-size. In the presence of uncertainty, convergence requires a more conservative step-size policy, but with high probability, the algorithm remains locally convergent and achieves an exponential convergence rate.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here