Exploring the Regulatory Function of the N-terminal Domain of SARS-CoV-2 Spike Protein Through Molecular Dynamics Simulation

6 Jan 2021  ·  Yao Li, Tong Wang, Juanrong Zhang, Bin Shao, Haipeng Gong, Yusong Wang, Siyuan Liu, Tie-Yan Liu ·

SARS-CoV-2 is what has caused the COVID-19 pandemic. Early viral infection is mediated by the SARS-CoV-2 homo-trimeric Spike (S) protein with its receptor binding domains (RBDs) in the receptor-accessible state. We performed molecular dynamics simulation on the S protein with a focus on the function of its N-terminal domains (NTDs). Our study reveals that the NTD acts as a "wedge" and plays a crucial regulatory role in the conformational changes of the S protein. The complete RBD structural transition is allowed only when the neighboring NTD that typically prohibits the RBD's movements as a wedge detaches and swings away. Based on this NTD "wedge" model, we propose that the NTD-RBD interface should be a potential drug target.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here