Exploring Lightweight Federated Learning for Distributed Load Forecasting

4 Apr 2024  ·  Abhishek Duttagupta, Jin Zhao, Shanker Shreejith ·

Federated Learning (FL) is a distributed learning scheme that enables deep learning to be applied to sensitive data streams and applications in a privacy-preserving manner. This paper focuses on the use of FL for analyzing smart energy meter data with the aim to achieve comparable accuracy to state-of-the-art methods for load forecasting while ensuring the privacy of individual meter data. We show that with a lightweight fully connected deep neural network, we are able to achieve forecasting accuracy comparable to existing schemes, both at each meter source and at the aggregator, by utilising the FL framework. The use of lightweight models further reduces the energy and resource consumption caused by complex deep-learning models, making this approach ideally suited for deployment across resource-constrained smart meter systems. With our proposed lightweight model, we are able to achieve an overall average load forecasting RMSE of 0.17, with the model having a negligible energy overhead of 50 mWh when performing training and inference on an Arduino Uno platform.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here