Exploration versus exploitation in reinforcement learning: a stochastic control approach

We consider reinforcement learning (RL) in continuous time and study the problem of achieving the best trade-off between exploration of a black box environment and exploitation of current knowledge. We propose an entropy-regularized reward function involving the differential entropy of the distributions of actions, and motivate and devise an exploratory formulation for the feature dynamics that captures repetitive learning under exploration... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
Entropy Regularization
Regularization